Does Variation in Genome Sizes Reflect Adaptive or Neutral Processes? New Clues from Passiflora
نویسندگان
چکیده
One of the long-standing paradoxes in genomic evolution is the observation that much of the genome is composed of repetitive DNA which has been typically regarded as superfluous to the function of the genome in generating phenotypes. In this work, we used comparative phylogenetic approaches to investigate if the variations in genome sizes (GS) should be considered as adaptive or neutral processes by the comparison between GS and flower diameters (FD) of 50 Passiflora species, more specifically, within its two most species-rich subgenera, Passiflora and Decaloba. For this, we have constructed a phylogenetic tree of these species, estimated GS and FD of them, inferred the tempo and mode of evolution of these traits and their correlations, using both current and phylogenetically independent contrasted values. We found significant correlations among the traits, when considering the complete set of data or only the subgenus Passiflora, whereas no correlations were observed within Decaloba. Herein, we present convincing evidence of adaptive evolution of GS, as well as clues that this pattern is limited by a minimum genome size, which could reduce both the possibilities of changes in GS and the possibility of phenotypic responses to environment changes.
منابع مشابه
The Effect of Variation in the Effective Population Size on the Rate of Adaptive Molecular Evolution in Eukaryotes
The role of adaptation is a fundamental question in molecular evolution. Theory predicts that species with large effective population sizes should undergo a higher rate of adaptive evolution than species with low effective population sizes if adaptation is limited by the supply of mutations. Previous analyses have appeared to support this conjecture because estimates of the proportion of nonsyn...
متن کاملConservation genetics: where are we now?
Philip W. Hedrick Dept of Biology, Arizona State University, Tempe, AZ 85287, USA. e-mail: philip.hedrick@ asu.edu The recent extinction of many species, and continuing threats to many more has made conservation biology crucial in the 21st century. Although ecological, political, economic, and other forces might be of primary concern for avoiding the extinction of most endangered species, for l...
متن کاملHarnessing genomics for delineating conservation units.
Genomic data have the potential to revolutionize the delineation of conservation units (CUs) by allowing the detection of adaptive genetic variation, which is otherwise difficult for rare, endangered species. In contrast to previous recommendations, we propose that the use of neutral versus adaptive markers should not be viewed as alternatives. Rather, neutral and adaptive markers provide diffe...
متن کاملGene genealogies strongly distorted by weakly interfering mutations in constant environments.
Neutral nucleotide diversity does not scale with population size as expected, and this "paradox of variation" is especially severe for animal mitochondria. Adaptive selective sweeps are often proposed as a major cause, but a plausible alternative is selection against large numbers of weakly deleterious mutations subject to Hill-Robertson interference. The mitochondrial genealogies of several sp...
متن کاملThe use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae)
The discovery and characterization of informative intraspecific genetic markers is fundamental for evolutionary and conservation genetics studies. Here, we used nuclear ribosomal ITS sequences to access intraspecific genetic diversity in 23 species of the genus Passiflora L. Some degree of variation was detected in 21 of these. The Passiflora and Decaloba (DC.) Rchb. subgenera showed significan...
متن کامل